Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
CMAJ ; 194(20): E693-E700, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1862287

ABSTRACT

BACKGROUND: The tremendous global health burden related to COVID-19 means that identifying determinants of COVID-19 severity is important for prevention and intervention. We aimed to explore long-term exposure to ambient air pollution as a potential contributor to COVID-19 severity, given its known impact on the respiratory system. METHODS: We used a cohort of all people with confirmed SARS-CoV-2 infection, aged 20 years and older and not residing in a long-term care facility in Ontario, Canada, during 2020. We evaluated the association between long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ground-level ozone (O3), and risk of COVID-19-related hospital admission, intensive care unit (ICU) admission and death. We ascertained individuals' long-term exposures to each air pollutant based on their residence from 2015 to 2019. We used logistic regression and adjusted for confounders and selection bias using various individual and contextual covariates obtained through data linkage. RESULTS: Among the 151 105 people with confirmed SARS-CoV-2 infection in Ontario in 2020, we observed 8630 hospital admissions, 1912 ICU admissions and 2137 deaths related to COVID-19. For each interquartile range increase in exposure to PM2.5 (1.70 µg/m3), we estimated odds ratios of 1.06 (95% confidence interval [CI] 1.01-1.12), 1.09 (95% CI 0.98-1.21) and 1.00 (95% CI 0.90-1.11) for hospital admission, ICU admission and death, respectively. Estimates were smaller for NO2. We also estimated odds ratios of 1.15 (95% CI 1.06-1.23), 1.30 (95% CI 1.12-1.50) and 1.18 (95% CI 1.02-1.36) per interquartile range increase of 5.14 ppb in O3 for hospital admission, ICU admission and death, respectively. INTERPRETATION: Chronic exposure to air pollution may contribute to severe outcomes after SARS-CoV-2 infection, particularly exposure to O3.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19/epidemiology , Cohort Studies , Environmental Exposure/adverse effects , Humans , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Ontario/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Prospective Studies , SARS-CoV-2
2.
Remote Sensing ; 14(7):1625, 2022.
Article in English | MDPI | ID: covidwho-1762757

ABSTRACT

We present tropospheric nitrogen dioxide (NO2) changes observed by the Canadian Pandora measurement program in the Greater Toronto Area (GTA), Canada, and compare the results with surface NO2 concentrations measured via in situ instruments to assess the local emission changes during the first two years of the COVID-19 pandemic. In the City of Toronto, the first lockdown period started on 15 March 2020, and continued until 24 June 2020. ECMWF Reanalysis v5 (ERA-5) wind information was used to facilitate the data analysis and reveal detailed local emission changes from different areas of the City of Toronto. Evaluating seven years of Pandora observations, a clear NO2 reduction was found, especially from the more polluted downtown Toronto and airport areas (e.g., declined by 35% to 40% in 2020 compared to the 5-year mean value from these areas) during the first two years of the pandemic. Compared to the sharp decline in NO2 emissions in 2020, the atmospheric NO2 levels in 2021 started to recover, but are still below the mean values in pre-pandemic time. For some sites, the pre-pandemic NO2 local morning rush hour peak has still not returned in 2021, indicating a change in local traffic and commuter patterns. The long-term (12 years) surface air quality record shows a statistically significant decline in NO2 with and without April to September 2020 observations (trend of −4.1%/yr and −3.9%/yr, respectively). Even considering this long-term negative trend in NO2, the observed NO2 reduction (from both Pandora and in situ) in the early stage of the pandemic is still statistically significant. By implementing the new wind-based validation method, the high-resolution satellite instrument (TROPOMI) can also capture the local NO2 emission pattern changes to a good level of agreement with the ground-based observations. The bias between ground-based and satellite observations during the pandemic was found to have a positive shift (5–12%) than the bias during the pre-pandemic period.

3.
Stress ; 25(1): 134-144, 2022 01.
Article in English | MEDLINE | ID: covidwho-1728770

ABSTRACT

The importance of social interactions has been reported in a variety of animal species. In human and rodent models, social isolation is known to alter social behaviors and change anxiety or depression levels. During the coronavirus pandemic, although people could communicate with each other through other sensory cues, social touch was mostly prohibited under different levels of physical distancing policies. These social restrictions inspired us to explore the necessity of physical contact, which has rarely been investigated in previous studies on mouse social interactions. We first conducted a long-term observation to show that pair-housed mice in a standard laboratory cage spent nearly half the day in direct physical contact with each other. Furthermore, we designed a split-housing condition to demonstrate that even with free access to visual, auditory, and olfactory social signals, the lack of social touch significantly increased anxiety-like behaviors and changed social behaviors. There were correspondingly higher levels of the pro-inflammatory cytokine interleukin-6 in the hippocampus in mice with no access to physical contact. Our study demonstrated the necessity of social touch for the maintenance of mental health in mice and could have important implications for human social interactions.


Subject(s)
Housing, Animal , Touch , Animals , Anxiety/psychology , Behavior, Animal , Male , Mice , Social Behavior , Social Isolation/psychology , Stress, Psychological
4.
Environ Res ; 194: 110645, 2021 03.
Article in English | MEDLINE | ID: covidwho-996876

ABSTRACT

BACKGROUND: Quantifying the impact of environmental factors on COVID-19 transmission is crucial in preventing more cases. Ultraviolet (UV) radiation and ozone (O3) have reported antimicrobial properties but few studies have examined associations with community infectivity of COVID-19. Research suggests UV light can be preventative while the effect of O3 is contested. We sought to determine the relationship between UV, O3, and COVID-19 incidence in Ontario, Canada. METHODS: In our time series analyses, we calculated daily incidence rates and reproductive number (Rt) from 34,975 cases between January and June 2020 across 34 Ontario Public Health Units. We used generalised linear models, adjusting for potential confounders, to calculate point estimates (PE) and 95% confidence intervals (CI) for UV and O3. Analyses were further stratified by age groups and outbreaks at institutions versus community. RESULTS: We found that 1-week averaged UV was significantly associated with a 13% decrease (95% CI: 0.80-0.96) in overall COVID-19 Rt, per unit increase. A negative association with UV was also significant among community outbreaks (PE: 0.88, 95% CI: 0.81-0.96) but not institutional outbreaks (PE: 0.94, 95% CI: 0.85-1.03). A positive association of O3 with COVID-19 incidence is strongly suggested among institutional outbreak cases (PE: 1.06, 95% CI: 1.00-1.13). CONCLUSION: Our study found evidence to support the hypothesis that higher UV reduced transmission of COVID-19 and some evidence that ground-level O3 positively influenced COVID-19 transmission. Setting of infection should be strongly considered as a factor in future research. UV and O3 may explain some of COVID-19's seasonal behaviour.


Subject(s)
COVID-19 , Ozone , Humans , Linear Models , Ontario/epidemiology , Ozone/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL